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TE(2"ICAL NOTE D-267 

EIEAT TRANSFER TO CYLINDERS I N  CROSSFLOW 

IN HYPERSONIC FUREFIED GAS STREAMS 

By Ruth N .  Welt- and Perry W. Kuhns 

SUMMARY 

A study was made of the heat t ransfer  t o  cyl inders  i n  crossflow i n  
a low-density wind tunnel f o r  t h ree  gases of d i f f e ren t  molecular weight 
and accommodation coeff ic ient  a t  Mach numbers of about 5 with nitrogen, 
about 4 and 7 with helium, and about 6 with argon. These da ta  cover t h e  
range of Knudsen numbers from free-mol-ecule flow t o  almost continuum 
flow. 
0.1 5 Re _< 1000, and 0.001 ,< Kn 5 15. 
cate  an accommodation coeff ic ient  of about 0.9 f o r  nitrogen, about 1.0 
f o r  argon, and about 0.4 f o r  helium on a Chromel-Alumel thermocouple 
w i r e .  

Nusselt, Reynolds, and Knudsen numbers covered are 0.01 5 N u  ,< 10, 
The free-molecule flow da ta  indi-  

Temperature-recovery r a t i o s  were a l so  measured over a range of Knud- 
sen numbers from free-molecule flow t o  almost continuum flow. For f ree-  
molecule flow the  r a t i o  approaches a value t h a t  i s  close t o  t h a t  predicted 
by theory.  

INTRODUCTION 

Heat t r ans fe r  i n  high-speed, ra ref ied  gases i s  of i n t e r e s t  f o r  
s tudies  of material  behavior, instrumentation, and f l i gh t  performance at 
high a l t i t udes .  I n  problems of hypersonic f l i g h t ,  heat- t ransfer  data 
f o r  monatomic and f o r  diatomic gases of d i f f e ren t  molecular w e i g h t  and 
under conditions of d i f fe ren t  accommodation coef f ic ien t  are of spec ia l  
importance. 
condition of t he  body as much as on the gas propert ies ,  it i s  qui te  pos- 
s ible  that the  accommodation coeff ic ients  encountered in  space f l igh t  
w i l l  vary. For this  reason heat-transfer s tudies  were undertaken on 
three rarefied gases of d i f fe ren t  molecular w e i g h t  and accommodation 
coef f ic ien t .  

Since the accommodation coeff ic ient  depends on the surface 
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I n  the  t r ans i t i on -  and slip-flow regions as w e l l  as i n  the continuum- 
flow region, heat- t ransfer  data have t o  be obtained experimentally, s ince 
no theore t ica l  solut ion e x i s t s  i n  these flow regions f o r  t h e  determination 
of heat t r ans fe r  t o  a cylinder i n  a viscous compressible f l u i d .  Several  
papers on experimental work on the heat t r ans fe r  t o  cylinders i n  crossflow 
a t  supersonic and hypersonic Mach numbers i n  these flow regions have been ' 

published f o r  a i r  (refs.  1 t o  7 )  and f o r  nitrogen ( r e f s .  1 and 8 ) .  

I n  t he  free-molecule-flow region theo re t i ca l  calculat ions have been 
made f o r  heat t r a n s f e r  t o  cylinders i n  crossflow ( r e f .  9 ) .  These calcula- 
t i ons  show that in free-molecule flow t h e  heat- t ransfer  r a t e  or the Nusselt 
number is  a l i n e a r  function of t h e  Reynolds nurriber and depends a l s o  on t h e  
accommodation coef f ic ien t .  Although accommodation coef f ic ien ts  are re- 
ported in  the l i t e r a t u r e  (refs.  10 t o  12), these reported values vary too 
much, probably because of insuf f ic ien t  control  of t he  experimental condi- 
t i ons ,  t o  be used f o r  heat- t ransfer  calculat ions.  
molecule flow heat- t ransfer  data  are usual ly  a l s o  obtained experimentally 
and used t o  determine the  accommodation coef f ic ien t  f o r  the prevai l ing 
experimental conditions. The extent of t h e  free-molecule-flow region 
a l s o  i s  determined by heat- t ransfer  measurements. The free-molecule 
heat- t ransfer  and temperature-recovery data which were measured on cyl-  
inders in crossflow i n  rarefied gas streams at supersonic speeds ( r e f s .  
8, 9, and 13) agree w e l l  w i t h  t h e  free-molecule-flow theory. 
mental heat- t ransfer  data were obtained f o r  nitrogen gas ( re fs .  8 and 13), 
and the temperature-recovery r a t i o s  w e r e  determined f o r  nitrogen and 
helium gas (refs. 8, 9, and 13) .  

Therefore i n  free- 

The experi- 

The object of t h i s  report  i s  t o  compare heat- t ransfer  data f o r  cyl-  
inders i n  crossflow a t  hypersonic Mach numbers f o r  gases of d i f f e ren t  
specific--heat r a t io ,  molecular weight, and accommodation coef f ic ien t .  
The experimental data extend in to  a l l  flow regimes from free-molecule t o  
almost continuum flow. This made it possible t o  determine approximate 
t r ans i t i on  points  from one flow region in to  another and also t o  obtain 
accommodation coeff ic ients  f o r  the  prevai l ing experimental conditions.  

Since heat- t ransfer  data were avai lable  f o r  nitrogen ( r e f s .  1, 8, 
9, and 131, it w a s  chosen as one of t he  three  gases. 
check of t h e  literature data  and of the experimental technique used i n  
th i s  report, and a l so  some addi t ional  heat- t ransfer  data  f o r  nitrogen. 
H e l i u m  was chosen because of i t s  l o w  molecular weight and low accommoda- 
t i o n  coeff ic ient .  Argon w a s  selected as the  t h i r d  gas, because it i s  
monatomic l i k e  helium but has a high accommodation coef f ic ien t  l i k e  
nitrogen and a higher molecular w e i g h t  than nitrogen. 
and temperature-recovery da ta  were determined at  t h e  following Mach 
numbers: M 5 f o r  nitrogen, M w 4 and 7 f o r  helium, and M u 6 f o r  
argon. 

This provided a 

The heat- t ransfer  
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S t a t i c  pressures i n  the gas stream ranged from 20 t o  220 microns of 
mercury. Experimental determinations of time constants were made on bare- 
wire thermocouples i n  crossflow t o  determine the  re la t ions  between Nus- 
s e l t  and Reynolds numbers f o r  0.015 Nu 5 10 and 0.1 ,< Re 6 1OOO. Tem- 
peratures were measured together with the time constants t o  obtain the 
temperature-recovery r a t i o  ( r a t i o  of measured w i r e  temperature t o  t o t a l  
gas temperature) as a function of Knudsen number f o r  0.01 5 Kn 5 15. 
(Symbols a re  defined in the appendix. 1 

TEST FACILITY 

The t e s t  f a c i l i t y  is  a continuously operating low-density tunnel with 
available pressures of 0.02 micron of mercury at  the no-flow condition 
("ultimate vacuum") t o  a maximum of about 300 microns of mercury. The 
tunnel and pumping system are  shown in f igure 1. 
about 4 f e e t  i n  diameter and 5 f ee t  long and i s  provided with 20-inch- 
diameter access p la tes  on each s ide for windows and instrument connec- 
t ions .  The nozzle i s  attached t o  the front  p l a t e  of the  tes t  chamber, 
so t h a t  the high-velocity jet  discharges in to  the  t e s t  chamber ( f i g .  1). 
Five oi l -diffusion booster pwps  are used t o  obtain the l o w  pressure i n  
the t e s t  chamber. The required forepressure and throughput a re  obtained 
by the use of mechanical pumps in  combination with a two-impeller rotary 
blower. Poppet valves a re  ins ta l led  between the  t e s t  chamber and each 
booster pump t o  permit the use of one t o  f ive  pumps. 
rate of the  group of f ive  booster pumps as a function of pressure is 
shown in f igure 2 f o r  nitrogen, argon, and helium. 

The test  chamber i s  

The volume flow 

Two supersonic nozzles were employed. Nozzle 1, which was used f o r  
most measurements, produced a j e t  s t ream a t  a Mach number of about 5 for 
air  or  nitrogen. The design of t h i s  nozzle was s imilar  t o  one described 
i n  the  l i t e r a t u r e  ( r e f .  14)  f o r  somewhat s imilar  s tudies  on nitrogen. 
Since the  boundary-layer thickness increases with decreasing density, 
allowance w a s  made i n  the  design for the boundary-layer thickness encoun- 
te red  a t  these low dens i t ies .  The nozzle throat  diameter i s  about 0.2 
inch and the  ex i t  diameter i s  about 1 .6  inches. 
were made a t  a stream s t a t i c  pressure of more than 20 microns of mercury, 
since below t h i s  pressure the boundary layer  became so  great t h a t  it al- 
most f i l l e d  the cross section. 

A l l  reported measurements 

Nozzle 2 w a s  a conical one and was used t o  check some of the helium 
data.  The throat  diameter i s  about 0.5 inch and the e x i t  diameter i s  
about 2.7 inches. 



4 

The nozzle w a s  cal ibrated by determining Mach number p r o f i l e s  t rans-  
verse t o  the  j e t  ax i s  a t  d i f f e r e n t  distances from the plane of the nozzle 
e x i t .  The impact probe t h a t  w a s  used t o  measure the prof i les  had a diam- 
e t e r  of 0 .1  inch. Thus the flow measured by t h i s  probe always remained 
i n  the continuum-flow region down t o  the  lowest employed s t a t i c  pres- 
sures of about 20 microns of mercury i n  the j e t  stream. Thus, no f r ee -  
molecule-flow or sl ip-flow corrections had t o  be applied t o  the impact- 
pressure measurements. However, the s ta t ic-pressure measurements re- 
quired corrections which were found by the following procedure. Assum- 
ing isentropic flow a t  l e a s t  i n  the center l ine of the j e t ,  the Mach 
number can be obtained from the r a t i o  of the t o t a l  pressure upstream t o  
the impact pressure downstream of the nozzle and a l s o  from the r a t i o  of 
impact t o  s t a t i c  pressure downstream of the  nozzle. The center l ine Mach 
number was determined from the r a t i o  of upstream t o t a l  t o  downstream 
impact pressure. This Mach number together with the downstream impact 
pressure w a s  then used t o  f i n d  the corrected center l ine s t a t i c  pressure.  
This procedure was repeated t o  obtain a correction curve f o r  the complete 
range of measured s t a t i c  pressures.  The l o c a l l y  measured and corrected 
s t a t i c  pressure together with the l o c a l l y  measured impact pressure w a s  
used t o  obtain the loca l  Mach number a t  a l l  posit ions other than along 
the centerline of the j e t .  

Mach number p ro f i l e s  a t  about 1 . 2  inches downstream from the  e x i t  
plane of t he  nozzle a re  shown i n  f igure 3 f o r  nitrogen, argon, and 
helium. Two p ro f i l e s  of nozzle 1 a r e  shown f o r  each gas a t  two j e t  
centerline s t a t i c  pressures t o  show the e f f e c t  of increasing boundary 
layer  on t h e  shape of the prof i les  and on the center l ine Mach number. 
Nozzle l w a s  designed f o r  air  or nitrogen t o  give a j e t  stream a t  M 5 .  
The prof i les  f o r  nitrogen a re  f l a t  over about 0.5 inch, and the center- 
l i n e  Mach number varied between 5.0 5 M C 5.3 f o r  20 5 ps f 150 microns 
of mercury. Argon has a d i f fe ren t  specific-heat r a t i o  from nitrogen. 
Therefore, with t h i s  same nozzle the  Mach number prof i les  a r e  not qu i t e  as 
f l a t  as those f o r  nitrogen. The center l ine Mach number varied between 
6.0 I M I  6 .4  f o r  2 0  I ps I100 microns of mercury. H e l i u m  has the  same 
specific-heat r a t i o  as argon, but i t s  molecular weight i s  very d i f fe ren t  
from that of nitrogen or argon. Therefore, with t h i s  same nozzle, very 
poor Mach number prof i les  were obtained. 
varied between 6.6 2 M 5 7 . 0  f o r  2 0  I p s  _< 100 microns of mercury. 
t h e  conical nozzle 2,  t he  Mach number p r o f i l e s  f o r  helium are f l a t  over 
about 0 . 4  inch. Because of t h f s  nozzle 's  conical shape, t he  boundary 
layer  almost f i l l e d  the  cross section at stream s t a t i c  pressures below 
150 microns of mercury. Thus nozzle 2 could be used only over a very 
l imited range of stream s t a t i c  pressures.  The center l ine Mach number 
varied between 3.5 I M I  3.9 f o r  180 I p s  I 2 2 0  microns of mercury. Since 
t h e  Mach number prof i les  f o r  helium i n  nozzle 1 are not f l a t ,  t h e  v a l i d i t y  
of t h e  heat-transfer data  measured with t h i s  nozzle i n  helium might be 
questioned. However, t h e  heat- t ransfer  da ta  f o r  helium obtained w i t h  noz- 
z l e  2 check those that were measured using nozzle 1; therefore,  it i s  f e l t  
t h a t  t h e  helium heat-transfer da ta  are va l id .  

The center l ine Mach number 
With 



5 

t- cu 
W 

E; 

The upstream pressures were measured with an oil manometer, w h i l e  
t h e  downstream pressures were measured with a thermal-conductivity-type 
(Autovac) gage, which was ca l ibra ted  for each gas against  a McLeod gage 
at pressures less than 500 microns of mercury and against  an o i l  manometer 
a t  pressures grea te r  than 500 microns of mercury. 

Seven thermocouple probes placed about 1 .2  inches downstream from 
t h e  nozzle e x i t  were t e s t ed .  Their diameters and materials are given i n  
t ab le  I. 
The junctions of t he  wires were butt-welded. The two smallest w i r e  diam- 
e t e r s  were measured with a microscope and the  others with a micrometer. 
All measurements were rounded off t o  the  last place given in  t h e  table.  
The thermocouples const i tuted one side of a t r i ang le  which they formed 
with the two support wires. The thermocouple and t h e  two supports were 
each about 1.0 inch long. The thermocouples were mounted normal t o  t h e  
stream of the  je t ,  while t h e  support wires were yawed a t  an angle of 
about 45'. 
time constant two of t he  specimens consisted of a large-diameter hollow 
copper cylinder with a 0.005-inch w a l l  thickness and having a 0.0031- 
inch-diameter constantan thermocouple w i r e  attached t o  it at  mid-length. 

No special  treatment was applied t o  t h e  bare-wire thermocouples. 

To obtain a high Reynolds number and a r e l a t ive ly  short  

Time constants were measured by inducing a s tep  change in  t h e  w i r e  
temperature. The thermocouple w i r e  was f i r s t  shielded f romthe  j e t  
stream, so  t h a t  it was at t e s t  chamber temperature. A sudden removal of 
t h e  shield increased or decreased the temperature of t h e  wire, depending 
upon the  recovery temperature. The time constant of t h e  s t ep  change w a s  
measured from the recorfied response and interpreted as described i n  
reference 15. 

CALCULATIONS 

Reynolds numbers RelO w e r e  calculated by using the  v i scos i ty  at  
the  total-temperature and t h e  density at static-temperature conditions. 
Nusselt numbers were calculated from the time constant by using 
the gas conductivity k at t h e  t o t a l  temperature. The values f o r  gas 
viscosi ty ,  thermal conductivity, and other  propert ies  were obtained from 
references 10 and 16 .  The w i r e  constants, such as spec i f ic  heat,  density, 
and thermal conductivity, were taken from reference 15. 
sure corresponding t o  the  respective center l ine  Mach number w a s  used. 
Nusselt numbers and w i r e  temperatures were corrected whenever necessary 
i n  t h e  manner of reference 15 fo r  end conduction losses  and f o r  t h e  change 
i n  Mach number and s t a t i c  pressure along the  transverse p r o f i l e  of t he  
je t .  These corrections resu l ted  i n  a decrease i n  the  measured Nusselt 
number. The maximum corrections that  were applied t o  the  measured values 
of t h e  Nusselt number a re  given i n  table I f o r  each thermocouple and gas. 
The wire temperature corrections were always pos i t ive  and l e s s  than 1 
percent f o r  nitrogen and argon and less than 2 percent f o r  helium. 

Nulo 

The s t a t i c  pres- 
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The Knudsen number var ies  l e s s  with Mach number when expressed as a 

J 
1.90 0.65 - r ; K n _ < -  
Relo Relo 

function of RelO than as a function of Re,. For 2 5 M I ;  8 a t  

To = 540' R, the range of Kn f o r  air  and nitrogen i s  

1.55 , < K n , < -  1.95 - OS7O, and f o r  helium it i s  1.50 - < Kn I -- 
Relo 

f o r  argon it is  
Relo - Relo Relo 

RESULTS AND DISCUSSION 

Nusselt Number - Reynolds Number Relations T 
02 
c\) 
4 

In  subsonic continuum flow the empirical equation f o r  heat t r ans fe r  
from gases t o  cylinders i n  crossflow i s  well established ( r e f s .  1 and 15). 
The authors of reference 15 found experimentally t h a t  f o r  Reynolds numbers 
between 250 and 30,000 i n  subsonic continuous flow 

= 0.48 Nulo 
where Reo 
t o t a l  temperature. I n  hypersonic flow, i f  Reo i s  evaluated a t  condi- 
t ions  behind the normal shock, Reo i s  almost equal t o  Re2, since 
To T2. Because Re2 i s  equal t o  Relo (plvl = p2vz), the r e l a t ion  be- 
tween Nusselt and Reynolds numbers f o r  supersonic flow i n  nitrogen, argon, 
and helium where 

i s  based on an evaluation of the gas density and v iscos i ty  a t  

Proa3 0 0.9 can be approximated by the  equation 

Nulo = 0.434% 

I n  free-molecule flow ( r e f s .  8 and 9)  

Nulo = CaBelO 

where C i s  independent of M at Mach nwnbers above 2 but i s  a function 
of the  gas t ransport  properties and thus var ies  f o r  d i f fe ren t  gases. 

The heat-transfer curve f o r  nitrogen ( f i g .  4(a))  checks and augments 
t he  data that  had been obtained f o r  heat t r ans fe r  t o  cylinders i n  cross- 
flow a t  1 . 9  I M I 6.1 i n  ra ref ied  nitrogen ( r e f s  . 8 and 13) and at 
1 . 9  5 M 55.7 i n  a i r  ( r e f s .  3 and 7). 
( re fs .  1, 2, 4, 5, and 6) check f a i r l y  well also, but are not shown i n  
f igure  4(a) .  
theore t ica l ly  derived equation f o r  heat t r ans fe r  from c i r cu la r  cylinders 
oriented transversely t o  the  stream fo r  an accommodation coeff ic ient  of 
a, = 0.9.  This agrees with some values given in the literature ( r e f s .  10 
t o  1 2 ) .  Reference 8 a l so  obtained the best  f i t  between the  experimental 
data and the theore t ica l  curve when using All these data  were 
obtained a t  M 2  1.9,  where the heat t r ans fe r  i n  free-molecule flow i s  
almost independent of M. 
t h a t  the free-molecule-flow equation i s  applicable t o  a Knudsen number 

The data obtained i n  air  at M < 2 

I n  free-molecule flow, the experimental data  check the  

a = 0.9. 

me data fo r  nitrogen ( f i g .  4 (a) )  indicate 
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of the order of 2 o r  above. A t  Kn < 2 t r ans i t i on  and s l i p  flow set in, 
and the  heat t ransfer  i s  l e s s  than it would be i n  free-molecule or  con- 
tinuum flow. The slip-flow data obtained at  
with those of references 3, 7, and 8, which were determined a t  
1 . 9  5 M ,< 5.7.  The experimental data f o r  nitrogen indicate that complete 
continuum flow, so f a r  as  heat t ransfer  i s  concerned, seems t o  occur only 
a t  Knudsen numbers of 
posed t o  s e t  i n  at  This value is  probably correct  enough f o r  
most aerodynamic considerations, such as shock and boundary-layer forma- 
t ion,  since the  deviation in  heat t ransfer  from the  continuum-flow curve 
i s  very small at  10-3 I ~n s 10-2. 

M 0 5 agree f a i r l y  well 

Kn 5 lom3. In most t e x t s  continuum flow i s  sup- 
Kn 5 

The heat- t ransfer  curve f o r  argon ( f ig .  4(b))  i s  s i m i l a r  t o  t h a t  f o r  
nitrogen; the best  f i t  i n  free-molecule flow is  obtained w i t h  a = 1.0. 
This value again agrees well w i t h  some values given i n  the  l i t e r a t u r e  
( r e f s .  10 t o  1 2 ) .  
flow equation is applicable a t  a Knudsen number of the  order of 2 o r  
above. In this case the sl ip-flow data do not extend in to  continuum 
flow, but the  trend indicates t h a t  the continuum-flow region starts, 
as far as heat t ransfer  is concerned, a t  Kn Q since the  t rans i t ion-  
and slip-flow data have about the same slope and trend as those f o r  
nitrogen. 

The heat-transfer data show t h a t  the free-molecule- 

The helium heat-transfer curve ( f i g .  4 (c) )  looks somewhat d i f fe ren t .  
In  free-molecule flow 
curve. This value appears reasonable, since the  l i t e r a t u r e  ( r e f s .  10 t o  
1 2 )  reports  values betveer? 0.3 and 0.5 f o r  experiments made without spec ia l  
surface treatment of the  wires. It appears t h a t  a Knudsen number of tne  
order of 10 or  above i s  required f o r  free-molecule flow i n  t h e  helium gas; 
t h i s  l i m i t  is higher than the limits f o r  argon and nitrogen. I n  t r ans i -  
t i on  and s l i p  flow the  Nusselt number i s  much lower than it is  f o r  n i t ro-  
gen and argon, and the  t rend indicates t h a t  t he  curve w i l l  meet the  
continuum-flow curve at a Knudsen number of about 5UO-*. Thus the  regime 
of t r ans i t i on  and s l i p  flow f o r  helium extends f a r the r  than those f o r  
nitrogen and argon. The data obtained with nozzle 2 check w e l l  those 
measured with nozzle 1. 

a = 0.4 gives the  bes t  f i t  with the  theo re t i ca l  

The average deviation of a single observation i s  l e s s  than 10 per- 
cent f o r  a l l  three gases. The uncertainty i n  Nusselt number corrections 
f o r  end conduction losses  and Mach number prof i les ,  and addi t ional  er- 
rors  caused by inaccuracies i n  the determination of the j e t  velocity and 
s t a t i c  pressure might add an additional systematic error ,  which would be 
greatest  fo r  the  helium data because of the  steep Mach number p ro f i l e s  for 
helium in  nozzle 1. 
thermocouple in the  center of t he  jet, inaccuracy i n  measuring t h e  time 
constant, and errors  i n  effect ive wire-diameter measurement due t o  lack  
of roundness and uniformity of wire and junction. 

Some other  sources of e r ro r  a re  f a i l u r e  t o  place the  
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Temperature-Recovery Ratios 

The temperature-recovery ratio Tw/To is a function of the recovery 
factor r: 

For free-molecule flow a theoretical equation derived for the ? 
m 
@J 
4 

temperature-recovery ratio (ref. 9) shows it to be different for diatomic 
and monatomic gases, but independent of M at hypersonic Mach numbers. 
For M 2 4.0 for nitrogen (diatomic) 

TWITo = 1.165 

For M 2 5.0 for argon and helium (monatomic) 

Tw/To = 1.265 

The temperature-recovery ratio for nitrogen is shown in figure 5(a) 
as a function of Knudsen number. The average deviation in Tw/To is 
less than 2 percent. 
erences 8 and 13. In continuum flow at Kn _< 0.05, the temperature- 
recovery ratio approaches a value of about 0.965, which is in accordance 
with the temperature-recovery ratios obtained in supersonic airflow (refs . 
5 and 6). 
theoretically approach a value of 1.165 for nitrogen (ref. 9). 
ure 5(a), Tw/To 
further with Kn > 5. 

The data obtained at M I 5 check those from ref- 

In free-molecule flow the temperature-recovery ratio should 

appears to be 1.165 at Kn L 5, but seems to increase 
From fig- 

The data for the temperature-recovery ratios for argon and helium 
shown in figures 5(b) and (c) are less accurate and show a greater ex- 
perimental spread than those for nitrogen in figure 5(a>. The average 
deviation in Tw/To is about 3 percent. This is not surprising, since 
the jet Mach number profiles (fig. 3) are less flat for argon than for 
nitrogen and are not flat at all for helium, so that a small decentering 
of the thermocouple junction could have caused an error in the wire- 
temperature measurement. 
slip-flow region the temperature-recovery ratios for helium are sukstan- 
tially higher (and displaced by a constant amount) than those for nitro- 
gen and argon at any given Knudsen number. The free-molecule flow data 
of helium (ref. 9) were not used for comparison, since they were obtained 
at relatively low Mach numbers for which the temperature-recovery ratio 
Tw/To 

Figure 5 indicates that in the transition and 

in free-molecule flow is less than 1.265. 
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CONCLUDING REMARKS 

rc 
N 
to 

I w 

The heat-transfer data obtained in nitrogen f o r  cylinders i n  cross- 
flow at  hypersonic Mach numbers check w e l l  t h e  available data obtained i n  
nitrogen and a i r .  Thus heat t ransfer  i n  nitrogen and a i r  a t  temperatures 
below dissociat ion i s  the  same f o r  a l l  p r a c t i c a l  purposes i n  a l l  flow 
regimes. 

The heat- t ransfer  data obtained in  argon follow closely those of 
nitrogen. 
nanely 0 . 9  f o r  nitrogen and 1.0 f o r  arrgon, while they have d i f fe ren t  
specific-heat r a t i o s  and different  molecular w e i g h t s .  

The two gases have almost the same accommodation coeff ic ients ,  

H e l i u m ,  w i t h  a low molecular w e i g h t  compared with nitrogen and argon, 
w a s  found t o  have a low accommodation coeff ic ient  of only 0.4. Thus t h e  
helium heat- t ransfer  data i n  free-molecule flow d i f f e r  by a f a c t o r  of 2 . 5  
from those of nitrogen and argon. This difference prevai ls  throughout the 
t rans i t ion-  and slip-flow regions and only disappears a t  Knudsen numbers 
close t o  continuum flow. This suggests tha t  t h e  accommodation coeff ic ient  
i s  pr incipal ly  responsible f o r  t h e  difference i n  heat t r a n s f e r  that w a s  
found between nitrogen and helium. I n  continuum flow the  r e l a t i o n  between 
the Nusselt and Reynolds numbers i s  expected t o  be the same f o r  nitrogen, 
argon, and helium, since i n  continuum f l o w  the accommodation coef f ic ien t  
i s  1 for a l l  gases. Thus, the heat-transfer data reported f o r  helium 
seem t o  be representative f o r  any gas and cylinder combination with a 
s i m i l a r  low accommodation coefficient.  

L e w i s  Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, December 7, 1959 
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APPrnIX - SYMBOLS 

a 

C 

cP 

d 

h 

Kn 

k 

M 

Nu 

Pr 

P 

R 

Re  

r 

T 

V 

a 

Y 

CI 

P 

sound velocity,  

constant f o r  hypersonic free-molecule-flow heat t r ans fe r  ( a t  about 
~ 

’mr f o r  diatomic gases and - ‘gWr f o r  monatomic MI 22, - 
*cP “cP gases 

specif ic  heat a t  constant pressure 

thermocouple wire or cylinder diameter 

gravi ta t ional  constant 

heat-transfer coeff ic ient  

Knudsen number, 4- M/Res 

gas conductivity 

Mach number, v/a 

Nusselt number, hd/k 

Prandtl number 

pressure 

gas constant 

Reynolds number, dvp/p 

temperature-recovery f ac to r  

absolute temperature 

velocity 

accommodation coeff ic ient  

spec if i c  -heat r a t  i o  

viscosity 

density 

. 
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Subscripts : 

IC 
N a 
I w 

N s 

0 

S 

W 

1 

2 

10 

t o t a l  conditions 

s t a t i c  conditions 

w i r e  

free-stream conditions 

conditions behind a n0rma.l shock 

r e f e r s  t o  f a c t  t h a t  density i s  evaluated a t  free-stream conditions 
and that p and k a re  evaluated a t  t o t a l  temperature 
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TABLE I. - TBERMOCOUPLEl DLAMETERS AND 

MAXIMUM NUSSELT NUME3EB CORRECTIONS 

Gas Material 

(a) 

Diameter 
of 

cylinder , 
in. 

Maximum 
c o m  ec t ions 

applied 
t o  Nu, 

percent 

CA 
~ 

0.0011 4.0 
4.0 
2 .o 

N2 
A 
He 

N2  CA 0.0031 5.0 

N2 
A 
He  

I C  0.0050 15 
16 
15 

I C  0.0156 30 
30 
20  

I 
I -  
I 
I .  
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
t 
I -  
I 
I -  
I 

I 

N2 
A 
He  

N2 
A 
He 

0.0620 40 I C  
35 

40 1 
CUC 0.148 1.0 j 

1.0 N2 

N2 

He  

H e  
CUC 0.492 

1.0 1 
%A, Chromel-Alumel; I C ,  Iron- 

Constantan; CuC, Copper-Constantan. 
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Pressurr, microns Hg  

Figure 2. - Volume flow ra te  of low-density t e s t  f a c i l i t y .  
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Center l ine s t a t i c  Nozzle 
pres  sure, 

microns Hg - 
PS J 

7 

.4 
Distance from j e t  axis, i n .  

( c )  Helium. 

.8 

Figure 3. - Concluded. Mach number p r o f i l e s  along je t  diameter 1 .2  inches downstream from nozzle 
ex i t .  
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